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PROJECT SUMMARY

The engineering development study to follow was written to address the need for a Programmable Rate
Digital Satellite Modem capable of supporting both burst and continuous transmission modes with
either BPSK or QPSK modulation. The preferred implementation technique is an all digital one which
utilizes as much digital signal processing (DSP) as possible. The majority of this report consists
of outlining design trade-offs in each portion of the modulator and demodulator subsystem and of
identifying viable circuit approaches which are easily repeatable, have low implementation losses
and have low production costs.
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TECHNICAL AREAS THAT WERE INVESTIGATED UNDER THIS CONTRACT:

- TRANSMIT DSP DATA FILTERS

- TRANSMIT CLOCK SYNTHESIS

- CARRIER SYNTHESIZER

- DEMODULATOR'S AUTOMATIC GAIN CONTROL

- RECEIVE DSP DATA FILTERS
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IMPACT ON CARRIFER RECOVERY OF PROGRAMMARLE
RATE DIGITAL SATELLITE MODEMS
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SIDE CARRIER SELECTION

- CARRIER RECOVERY

- TIMING RECOVERY AND DATA SAMPLING
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Figure 1. Transmit Data Filter Block Diagram
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Table 1.

Number of FIR Coefficients Verses Alpha Factor

Classical Normalized Number Coefficients
Alpha Transition of Phase Linear
Factor Width Coefficients Requiremert

1.0 .5 7.0 7
.9 .45 7.8 9
.8 .4 8.8 9
7 .35 10.0 11
.6 .3 11.7 13
.5 .25 14.0 15
.4 .2 17.5 19
.3 .15 23.3 25
.2 .1 35.0 35
.1 .05 70.0 71

It is apparent by the data tabulated in Table 1

of excess bandwidth the DSP filter design must be capable of many more coefficients.

that as more restrictions are placed on the amount

It should be

noted that Table 1 above is only an estimation and that depending on the values of the coefficients
selected and the guantization level of the design that these estimates may need to be increased.
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Figure 3. Direct Numerical Synthesis for Clock Generation

DUAL CONVERSION

Another consideration is the method of modulating the carrier frequency. The simplest method is to
directly modulate the desired IF carrier. 1In this method the filtered baseband signal is mixed
directly onto the desired carrier and the modulation is complete. A second method, known as dual
conversion, uses a two step approach. In the first step the filtered baseband signal is modulated
onto a fixed carrier, then in a second step an IF synthesizer is used to frequency translate the
modulated spectrum to a particular carrier frequency. Figure __ reveals the modulation process
known as dual conversion. Notice that this method requires an additional mixer and oscillator,
however it does have advantages over the direct modulation method. One quadrature LO need only to

operate at one frequency, therefore the gquadrature can be ideal.
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Figure 4. Dual Conversion Frequency Modulation
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SATELLITE LINK RF OSCILLATOR PHASE NOISE IMPACT ON CARRIER
RECOVERY OF PROGRAMMABLE RATE DIGITAL SATELLITE MODEM

The carrier recovery network used in coherent demodulation of BPSK/QPSK signals must have sufficient
bandwidth to track the phase noise of the down link translated carrier to minimize per formance
degradations caused by RMS phase error jitter. On the other hand, the larger this bandwidth the
less signal to noise improvement, i.e., the higher the thermal noise performance degradations at low
Eb/No's. Based upon these conflicting requirements a minimum carrier recovery bandwidth can be
identified which is dependent on the RF frequency band used and the specific carrier recovery
implementation. Once this bandwidth is identified, the respective lower data rate limit can be
identified.

For Ku-Band (14/12 GHz) transmission INTELSAT documents IESS~-308 and IESS-405 define worst case
phase noise density masks for earth stations processing digital carriers with data rates up to 2048
KBS, Figures 5 and 6 depict these masks for the spacecraft and earth station frequency converters
respectively. Also shown in Figure 5 is a plot of the composite satellite link. For KA band
operation (30/20 GHz) the composite phase noise density will be shifted higher by about”6~8 dB.
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COQRDINATES OF POINTS
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Table 2 from reference (1) depicts the magnitude of tracking errors for a second order loop with
0.707 damping factor.

Table 2

PHASE-LOCKED TRACKING OF PHASE NOISE FOR A
Prase-Lockep Loor wrti Damping { = 0.707,
AND Notise BANDWIOTH B, = 0.5Jw,

Phase Error — Second-Order
Phase-Locked Loop, { = 0.707

Phase-Noise ) o j‘ - oMl d
Type of Phase Noise Specitral Density e o | + (wlw,)* GiNd
Frequency flicker kq kand kewd 8.7k,
noise VAl wl T (058" BF
White frequency ks 3.70k,
noise 7 B,
White phase noise ke S </n ke/a

(1 "Digital Communications By Satellite" by James J. Spilker, Jr., 1977 Prentice Uall, Inc.,
(Pages 336 through 357).
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Inspection of the composite satellite link phase noise spectral density
shown in Figure 5 identifies KA and KC as follows:

-1 —25dB
Ky = Log,, 10 (10 Hz) 3
KA = 3.16
-1 -86dB
and KC = Log10 10

K. = 2.51 x 1077

Since the plot shows a 10dB/decade not 20dB/decade rolloff between 100 Hz to 100 KHz, a worst case
value of -74dBc/Hz at 1 KHz will be used to determine KB since this value intersects the composite

curve at the 100 Hz specification point.

TABLE 3
OEC ac TOTAL = RMS PHASE JITTER
BN (Hz) fH = 25 KHz fH = 50 KHz f" = 100 Kliz UEA 0:8 f" = 25 Kiz fH = 50 KHz fH = 100 KHz
-3 -2 -2 -1 -1 -1 -1 -1
10Hz 7.9 X 10 "RAD|1.12 X 10 "RAD[1.58 X 10" “RAD{ 5.2 X 10  "RAD[1.2 X 10 'RAD [5.3 X 10 'Rap {5.3 x 10 'RAD |5.3 «x 10 "RAD
(30.6°) (30.6°) (30.6°)
-3 -2 -2 -2 -2 -2 -2 -2
100Kz 7.9 X 10 "RAD(1.12 X 10 "RAD|1.58 X 10 "RAD| 5.2 X 10 “RAD|3.8 X 10 ‘RAD }6.5 X 10 ‘RAD |6.5 X 10 2RAD |6.63 X 10~ 2Ra
{3.79 {3.7% ( 3.8%)
-3 -2 -2 -2 -2 -2 -2 -2
200Hz 7.9 X 10 "RAD|1.12 X 10 “RAD[1.58 X 10 "RAD| 2.6 X 10 "RAD|2.7 X 10 RAD [3.83 x 10 °RAD|3.9 x 10 %raD [4.0 X 10" 2RAp
(2.2% (2.2%9 (2.3%)
-3 -2 -2 -2 -2 -2 -2 -2
500Hz 7.9 X 10 "RADI1.12 X 10 "RAD|1.58 X 10 “RAD{ 1.0 X 10 "RAD|1.7 X 10 “RAD 2.1 X 107 “RAD [2.27 x 10”2Rap|2.53 x 10~ 2RAs
{1.2%) (1.3%) (1.45°)
-3 -2 -2 -3 -2 -2 -2 -2
1000Hz  17.8 X 10 "RADI1.12 X 10 "RAD|1.58 X 10 “RAD] 5.2 X 10 "RAD[1.2 x 10 “raD 1.5 x 107 “Rap |1.72 X 10 %RAD| 2.05 x 10 2Ra
(0.87% ( 0.99°) (1.2%
-3 -2 -2 -3 -3 -2 -2 -2
2000Mz  [7.6 X 10 "RAD|1.09 X 1G "RAD|1.58 X 10 “RAD| 2.6 X 10 "RAD|8.6 X 10 "RAD J1.18 X 10  °RAD|1.4 X 10 °Rap |1.82 x 10 “Ra
{0.67°) { 0.81°% (1.04%)
-1 -2 -2 -3 -3 -3 -2 -2
5000tz 7.1 X 10 "RAD{1.06 X 10 “RAD|1.54 X 10 “RAD| 1.0 X 10 °"RAD 5.4 X 10 "RAD 9.0 X 10 "RAD [1.2 X 10 RAD |1.6 X 10 "RAC
(0.51°) {0.68") 1 0.94%)
-3 -2 -2 -4 -3 -3 -2 -2
10000Hz 6.1 X 10 "RAD11.00 X 10 “RAD|1.50 X 10 “RAD| 5.2 X 10 "RAD(3.8 X 10 "RAD (7.2 X 107 RAD {1.07 x 10 0| 1.55 x 10™2Rs
{ 0.41%) { 0.61%) ( 0.89%)
TABLE 3

RMS TRACKING PHASE JITTER BETWEEN
RECOVERED CARRIER AND PSK STGHNAL
VERSUS BN (PLL NOISE BiliDWIDTH)
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MODULATOR IMPLEMENTATION
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Figure 7a. Functional Block Diagram of Direct QPSK
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CARRIER RECOVERY

INTRODUCTION

In general, Digital Satcllite Modems are characterized by providing the lowest possible Bit Error
Rate (BER) for a given Bit Energy per Noise Density (Eb/No}. Typically these modems are implemented
with robust BPSK or QPSK Modulation and high overhecad Forward Error Correction such that error-less
per formance can be realized over the satellite link which is characterized with high noise.

In order to support this objective, these digital modems utilize Coherent Demodulation and optimum
detection with low implementation losses. Coherent Demodulation is accommodated by multiplying the
received PSK signal with a locally generated recovered carrier replica. This recovered carrier
replica must have sufficient noise improvement quality and precise phase alignment with the specific
PSK modulated signal being processed in order to support low implementation loss BER degradation.
Since PSK is a suppressed carrier type of modulation, some type of non-linear signal processing is
necessary to redgenerate a coherent carrier reference. This process is the topic of this memo and is
referred to as "Carrier Recovery",

We initiate our effort in this study area by assessing current and proposed Carrier Recovery
schemes which are viable candidates for BPSK and QPSK Modulation. Next, we turn our attention
tovards the syccific requirements of the work study, i.e., a Carrier Recovery implementation which:

1] Supports Programmable Data Rates;
2) Operates with BPSK or QPSK Modulation;
1) Supports both Burst and Continuous Modes of Operation;
q) Minimizes the constraints on Clock Recovery/Bit Synchronization;
5) Allows for digital filtering techniques prior to data detection;
6) Can be implemented with Digital Signal Processing Techniques as conpared to Analoy Signal
Processing; and
7) Is viable in satellite communications.
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TO SYMBOL CLOCK RECOVLRY TO DATA DETECTION
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TIMING RECOVERY AND DATA SAMPLING

INTRODUCTION

The objective of this section is to identify the most favorable Timing Recovery Technigue and its
performance attributes which can be utilized by a Programmable Data Rate Digital Satellite Modem
operating in a Multi-Carrier Transponder environment. We initiate our discussion by jidentifying the
various types of Timing Recovery Techniques which are described in technical literature and used in
digital communications. The operational characteristics and features of each Timing Recovery Scheme
will be presented and a comparison to the study requirements will be made.

A candidate scheme will then be chosen based upon the one which offers the most favorable
attributes. The performance impact of the candidate Timing Recovery Scheme on Soft Decision Data
Sampling (detection) will also be assessed.

Lastly, viable hardware design techniques which utilize DSP Technology will be described for the

various functions required in the implementation of the technique. This is concluded with an
overall implementation diagram of the proposed lHardware Timing Recovery approach.
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Fiqure 24: PROPOSED MODULATOR
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